aboutsummaryrefslogtreecommitdiff
path: root/internal/state/single.go
blob: fd73b3fa18f340fd854a7d13f321040033a81db7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
package state

import (
	"context"
	"crypto"
	"crypto/ed25519"
	"fmt"
	"sync"
	"time"

	"git.sigsum.org/log-go/internal/db"
	"git.sigsum.org/sigsum-go/pkg/client"
	"git.sigsum.org/sigsum-go/pkg/log"
	"git.sigsum.org/sigsum-go/pkg/merkle"
	"git.sigsum.org/sigsum-go/pkg/requests"
	"git.sigsum.org/sigsum-go/pkg/types"
)

// StateManagerSingle implements a single-instance StateManagerPrimary for primary nodes
type StateManagerSingle struct {
	client    db.Client
	signer    crypto.Signer
	namespace merkle.Hash
	interval  time.Duration
	deadline  time.Duration
	secondary client.Client

	// Lock-protected access to pointers.  A write lock is only obtained once
	// per interval when doing pointer rotation.  All endpoints are readers.
	sync.RWMutex
	signedTreeHead   *types.SignedTreeHead
	cosignedTreeHead *types.CosignedTreeHead

	// Syncronized and deduplicated witness cosignatures for signedTreeHead
	events       chan *event
	cosignatures map[merkle.Hash]*types.Signature
}

// NewStateManagerSingle() sets up a new state manager, in particular its
// signedTreeHead.  An optional secondary node can be used to ensure that
// a newer primary tree is not signed unless it has been replicated.
func NewStateManagerSingle(dbcli db.Client, signer crypto.Signer, interval, deadline time.Duration, secondary client.Client) (*StateManagerSingle, error) {
	sm := &StateManagerSingle{
		client:    dbcli,
		signer:    signer,
		namespace: *merkle.HashFn(signer.Public().(ed25519.PublicKey)),
		interval:  interval,
		deadline:  deadline,
		secondary: secondary,
	}
	sth, err := sm.restoreTreeHead()
	if err != nil {
		return nil, fmt.Errorf("restore signed tree head: %v", err)
	}
	sm.signedTreeHead = sth

	ictx, cancel := context.WithTimeout(context.Background(), sm.deadline)
	defer cancel()
	return sm, sm.tryRotate(ictx)
}

func (sm *StateManagerSingle) ToCosignTreeHead() *types.SignedTreeHead {
	sm.RLock()
	defer sm.RUnlock()
	return sm.signedTreeHead
}

func (sm *StateManagerSingle) CosignedTreeHead(_ context.Context) (*types.CosignedTreeHead, error) {
	sm.RLock()
	defer sm.RUnlock()
	if sm.cosignedTreeHead == nil {
		return nil, fmt.Errorf("no cosignatures available")
	}
	return sm.cosignedTreeHead, nil
}

func (sm *StateManagerSingle) AddCosignature(ctx context.Context, pub *types.PublicKey, sig *types.Signature) error {
	sm.RLock()
	defer sm.RUnlock()

	msg := sm.signedTreeHead.TreeHead.ToBinary(&sm.namespace)
	if !ed25519.Verify(ed25519.PublicKey(pub[:]), msg, sig[:]) {
		return fmt.Errorf("invalid cosignature")
	}
	select {
	case sm.events <- &event{merkle.HashFn(pub[:]), sig}:
		return nil
	case <-ctx.Done():
		return fmt.Errorf("request timeout")
	}
}

func (sm *StateManagerSingle) Run(ctx context.Context) {
	sm.events = make(chan *event, 4096)
	defer close(sm.events)
	ticker := time.NewTicker(sm.interval)
	defer ticker.Stop()

	for {
		select {
		case <-ticker.C:
			ictx, cancel := context.WithTimeout(ctx, sm.deadline)
			defer cancel()
			if err := sm.tryRotate(ictx); err != nil {
				log.Warning("failed rotating tree heads: %v", err)
			}
		case ev := <-sm.events:
			sm.handleEvent(ev)
		case <-ctx.Done():
			return
		}
	}
}

func (sm *StateManagerSingle) tryRotate(ctx context.Context) error {
	th, err := sm.client.GetTreeHead(ctx)
	if err != nil {
		return fmt.Errorf("get tree head: %v", err)
	}
	nextSTH, err := sm.chooseTree(ctx, th).Sign(sm.signer, &sm.namespace)
	if err != nil {
		return fmt.Errorf("sign tree head: %v", err)
	}
	log.Debug("wanted to advance to size %d, chose size %d", th.TreeSize, nextSTH.TreeSize)

	sm.rotate(nextSTH)
	return nil
}

// chooseTree picks a tree to publish, taking the state of a possible secondary node into account.
func (sm *StateManagerSingle) chooseTree(ctx context.Context, proposedTreeHead *types.TreeHead) *types.TreeHead {
	if !sm.secondary.Initiated() {
		return proposedTreeHead
	}

	secSTH, err := sm.secondary.GetToCosignTreeHead(ctx)
	if err != nil {
		log.Warning("failed fetching tree head from secondary: %v", err)
		return refreshTreeHead(sm.signedTreeHead.TreeHead)
	}
	if secSTH.TreeSize > proposedTreeHead.TreeSize {
		log.Error("secondary is ahead of us: %d > %d", secSTH.TreeSize, proposedTreeHead.TreeSize)
		return refreshTreeHead(sm.signedTreeHead.TreeHead)
	}

	if secSTH.TreeSize == proposedTreeHead.TreeSize {
		if secSTH.RootHash != proposedTreeHead.RootHash {
			log.Error("secondary root hash doesn't match our root hash at tree size %d", secSTH.TreeSize)
			return refreshTreeHead(sm.signedTreeHead.TreeHead)
		}
		log.Debug("secondary is up-to-date with matching tree head, using proposed tree, size %d", proposedTreeHead.TreeSize)
		return proposedTreeHead
	}
	//
	// Now we know that the proposed tree size is larger than the secondary's tree size.
	// We also now that the secondary's minimum tree size is 0.
	// This means that the proposed tree size is at least 1.
	//
	// Case 1: secondary tree size is 0, primary tree size is >0 --> return based on what we signed before
	// Case 2: secondary tree size is 1, primary tree size is >1 --> fetch consistency proof, if ok ->
	//   2a) secondary tree size is smaller than or equal to what we than signed before -> return whatever we signed before
	//   2b) secondary tree size is larger than what we signed before -> return secondary tree head
	//
	// (If not ok in case 2, return based on what we signed before)
	//
	if secSTH.TreeSize == 0 {
		return refreshTreeHead(sm.signedTreeHead.TreeHead)
	}
	if err := sm.verifyConsistencyWithLatest(ctx, secSTH.TreeHead); err != nil {
		log.Error("secondaries tree not consistent with ours: %v", err)
		return refreshTreeHead(sm.signedTreeHead.TreeHead)
	}
	if secSTH.TreeSize <= sm.signedTreeHead.TreeSize {
		log.Warning("secondary is behind what primary already signed: %d <= %d", secSTH.TreeSize, sm.signedTreeHead.TreeSize)
		return refreshTreeHead(sm.signedTreeHead.TreeHead)
	}

	log.Debug("using latest tree head from secondary: size %d", secSTH.TreeSize)
	return refreshTreeHead(secSTH.TreeHead)
}

func (sm *StateManagerSingle) verifyConsistencyWithLatest(ctx context.Context, to types.TreeHead) error {
	from := sm.signedTreeHead.TreeHead
	req := &requests.ConsistencyProof{
		OldSize: from.TreeSize,
		NewSize: to.TreeSize,
	}
	proof, err := sm.client.GetConsistencyProof(ctx, req)
	if err != nil {
		return fmt.Errorf("unable to get consistency proof from %d to %d: %w", req.OldSize, req.NewSize, err)
	}
	if err := proof.Verify(&from.RootHash, &to.RootHash); err != nil {
		return fmt.Errorf("invalid consistency proof from %d to %d: %v", req.OldSize, req.NewSize, err)
	}
	log.Debug("consistency proof from %d to %d verified", req.OldSize, req.NewSize)
	return nil
}

func (sm *StateManagerSingle) rotate(nextSTH *types.SignedTreeHead) {
	sm.Lock()
	defer sm.Unlock()

	log.Debug("about to rotate tree heads, next at %d: %s", nextSTH.TreeSize, sm.treeStatusString())
	sm.handleEvents()
	sm.setCosignedTreeHead()
	sm.setToCosignTreeHead(nextSTH)
	log.Debug("tree heads rotated: %s", sm.treeStatusString())
}

func (sm *StateManagerSingle) handleEvents() {
	log.Debug("handling any outstanding events")
	for i, n := 0, len(sm.events); i < n; i++ {
		sm.handleEvent(<-sm.events)
	}
}

func (sm *StateManagerSingle) handleEvent(ev *event) {
	log.Debug("handling event from witness %x", ev.keyHash[:])
	sm.cosignatures[*ev.keyHash] = ev.cosignature
}

func (sm *StateManagerSingle) setCosignedTreeHead() {
	n := len(sm.cosignatures)
	if n == 0 {
		sm.cosignedTreeHead = nil
		return
	}

	var cth types.CosignedTreeHead
	cth.SignedTreeHead = *sm.signedTreeHead
	cth.Cosignature = make([]types.Signature, 0, n)
	cth.KeyHash = make([]merkle.Hash, 0, n)
	for keyHash, cosignature := range sm.cosignatures {
		cth.KeyHash = append(cth.KeyHash, keyHash)
		cth.Cosignature = append(cth.Cosignature, *cosignature)
	}
	sm.cosignedTreeHead = &cth
}

func (sm *StateManagerSingle) setToCosignTreeHead(nextSTH *types.SignedTreeHead) {
	sm.cosignatures = make(map[merkle.Hash]*types.Signature)
	sm.signedTreeHead = nextSTH
}

func (sm *StateManagerSingle) treeStatusString() string {
	var cosigned uint64
	if sm.cosignedTreeHead != nil {
		cosigned = sm.cosignedTreeHead.TreeSize
	}
	return fmt.Sprintf("signed at %d, cosigned at %d", sm.signedTreeHead.TreeSize, cosigned)
}

func (sm *StateManagerSingle) restoreTreeHead() (*types.SignedTreeHead, error) {
	th := zeroTreeHead() // TODO: restore from disk, stored when advanced the tree; zero tree head if "bootstrap"
	return refreshTreeHead(*th).Sign(sm.signer, &sm.namespace)
}

func zeroTreeHead() *types.TreeHead {
	return refreshTreeHead(types.TreeHead{RootHash: *merkle.HashFn([]byte(""))})
}

func refreshTreeHead(th types.TreeHead) *types.TreeHead {
	th.Timestamp = uint64(time.Now().Unix())
	return &th
}