1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
|
package x509util
import (
"fmt"
"crypto/ed25519"
"crypto/x509"
"encoding/pem"
)
// NewEd25519PrivateKey creates a new Ed25519 private-key from a PEM block
func NewEd25519PrivateKey(data []byte) (ed25519.PrivateKey, error) {
block, rest := pem.Decode(data)
if block == nil {
return nil, fmt.Errorf("pem block: is empty")
}
if block.Type != "PRIVATE KEY" {
return nil, fmt.Errorf("bad pem block type: %v", block.Type)
}
if len(rest) != 0 {
return nil, fmt.Errorf("pem block: trailing data")
}
key, err := x509.ParsePKCS8PrivateKey(block.Bytes)
if err != nil {
fmt.Errorf("x509 parser failed: %v", err)
}
switch t := key.(type) {
case ed25519.PrivateKey:
return key.(ed25519.PrivateKey), nil
default:
return nil, fmt.Errorf("unexpected signing key type: %v", t)
}
}
// NewCertificateList parses a block of PEM-encoded X.509 certificates
func NewCertificateList(rest []byte) ([]*x509.Certificate, error) {
var certificates []*x509.Certificate
for len(rest) > 0 {
var block *pem.Block
block, rest = pem.Decode(rest)
if block == nil {
return nil, fmt.Errorf("no block: probably caused by leading white space")
}
if block.Type != "CERTIFICATE" {
return nil, fmt.Errorf("unexpected pem block type: %v", block.Type)
}
certificate, err := x509.ParseCertificate(block.Bytes)
if err != nil {
return nil, fmt.Errorf("failed parsing x509 certificate: %v", err)
}
certificates = append(certificates, certificate)
}
return certificates, nil
}
// NewCertPool returns a new cert pool from a list of certificates
func NewCertPool(certificates []*x509.Certificate) *x509.CertPool {
pool := x509.NewCertPool()
for _, certificate := range certificates {
pool.AddCert(certificate)
}
return pool
}
// VerifyChain checks whether the listed certificates are chained such
// that the first is signed by the second, the second by the third, etc.
//
// Note: it is up to the caller to determine whether the final certificate
// is a valid trust anchor.
func VerifyChain(chain []*x509.Certificate) error {
for i := 0; i < len(chain)-1; i++ {
if err := chain[i].CheckSignatureFrom(chain[i+1]); err != nil {
return err
}
}
return nil
}
// ParseDerChain parses a list of DER-encoded X.509 certificates, such that the
// first (zero-index) blob is interpretted as an end-entity certificate and
// the remaining ones as its intermediate CertPool.
//
// Note: these are the parameters you will need to use x509.Certificate.Verify()
// with x509.VerifyOptions that include both a pool of roots and intermediates.
func ParseDerChain(chain [][]byte) (*x509.Certificate, *x509.CertPool, error) {
certificates, err := ParseDerList(chain)
if err != nil {
return nil, nil, err
}
if len(certificates) == 0 {
return nil, nil, fmt.Errorf("empty certificate chain")
}
intermediatePool := x509.NewCertPool()
for _, certificate := range certificates[1:] {
intermediatePool.AddCert(certificate)
}
return certificates[0], intermediatePool, nil
}
// ParseDerList parses a list of DER-encoded X.509 certificates
func ParseDerList(certificates [][]byte) ([]*x509.Certificate, error) {
ret := make([]*x509.Certificate, 0, len(certificates))
for _, der := range certificates {
c, err := x509.ParseCertificate(der)
if err != nil {
return nil, fmt.Errorf("certificate decoding failed: %v", err)
}
ret = append(ret, c)
}
return ret, nil
}
|